
11 Matrices Generate Groups

1. Analyze this group with the following elements, following the form of Example 1. What makes
this group fundamentally different from the example?

𝐼 =
[

1 0
0 1

]
, 𝐴 =

[
0 −1
1 0

]
, 𝐵 =

[
−1 0
0 −1

]
, 𝐶 =

[
0 1
−1 0

]

i. Specify the elements of the matrix group, unless they are all given.

They are all given.

ii. Describe what each matrix does to the plane.

𝐼 does nothing. 𝐴 rotates by 90◦ = 𝜋
2 counterclockwise. 𝐵 reflects over the origin, or rotates 180◦ = 𝜋

counterclockwise. 𝐶 rotates by 90◦ = 𝜋
2 clockwise, or 270◦ = 3𝜋

2 counterclockwise.

iii. Construct a group table; you can use a calculator.

Everything is a rotation by a factor of 90◦ = 𝜋
2 .

⋅ 𝐼 𝐴 𝐵 𝐶
𝐼 𝐼 𝐴 𝐵 𝐶
𝐴 𝐴 𝐵 𝐶 𝐼
𝐵 𝐵 𝐶 𝐼 𝐴
𝐶 𝐶 𝐼 𝐴 𝐵

iv. Decide which symmetry group your matrix is isomorphic to.

This is the cyclic group 𝐶4, which is (up to isomorphism) the rotation group of the square.

2. The matrix
⎡⎢⎢⎣
− 1

2 −
√
3
2√

3
2 − 1

2

⎤⎥⎥⎦
generates a group of order 3. Enumerate the elements of this group

and analyze per the example.

i. Specify the elements of the matrix group, unless they are all given.

Let the given matrix be 𝑀 =
⎡⎢⎢⎣
− 1

2 −
√
3
2√

3
2 − 1

2

⎤⎥⎥⎦
. Then

𝑀2 =
⎡⎢⎢⎣
− 1

2

√
3
2

−
√
3
2 − 1

2

⎤
⎥⎥⎦
;

𝑀3 = 𝐼 =
[
1 0
0 1

]
.

ii. Describe what each matrix does to the plane.

𝑀 rotates by 120◦ = 2𝜋
3 counterclockwise. 𝑀2 rotates by 240◦ = 4𝜋

3 counterclockwise, or 120◦ = 2𝜋
3

clockwise. 𝐼 does nothing.

iii. Construct a group table; you can use a calculator.

These are all rotations by a factor of 120◦ = 2𝜋
3 .

⋅ 𝐼 𝑀 𝑀2

𝐼 𝐼 𝑀 𝑀2

𝑀 𝑀 𝑀2 𝐼
𝑀2 𝑀2 𝐼 𝑀
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iv. Decide which symmetry group your matrix is isomorphic to.

This is the cyclic group 𝐶3, which is (up to isomorphism) the rotation group of the triangle.

3. The matrices
⎡⎢⎢⎣
− 1

2 −
√
3
2√

3
2 − 1

2

⎤⎥⎥⎦
and

[
1 0
0 −1

]
generate a group of order 6, of which the group in

problem 2 is a subgroup. Enumerate the elements of the group and analyze per the example.

i. Specify the elements of the matrix group, unless they are all given.

We know that the first matrix is a rotation by 120◦ = 2𝜋
3 , and the second matrix is a reflection about the

𝑥-axis, since it flips the 𝑦 coordinate. Thus, let the first matrix be 𝑟 and the second matrix be 𝑓 . Note how
understanding transformations helps us find the other matrices without much work.

The six elements are shown below.

𝑟 =
⎡⎢⎢⎣
− 1

2 −
√
3
2√

3
2 − 1

2

⎤⎥⎥⎦
𝑓 =

[
1 0
0 −1

]

𝑟2 =
⎡⎢⎢⎣
− 1

2

√
3
2

−
√
3
2 − 1

2

⎤⎥⎥⎦

𝑓𝑟 =
⎡⎢⎢⎣
− 1

2 −
√
3
2

−
√
3
2

1
2

⎤⎥⎥⎦

𝑓𝑟2 =
⎡⎢⎢⎣
− 1

2

√
3
2√

3
2

1
2

⎤⎥⎥⎦
𝐼 = 𝑓 2 = 𝑟3 =

[
1 0
0 1

]

ii. Describe what each matrix does to the plane.

𝑟 is a rotation by 120◦ = 2𝜋
3 counterclockwise. 𝑓 is a reflection about the 𝑥-axis. 𝑟2 is a rotation by

240◦ = 4𝜋
3 counterclockwise, or 120◦ = 2𝜋

3 clockwise. 𝑓𝑟 is a reflection about the line 𝜃 = 120◦ = 2𝜋
3 . 𝑓𝑟2 is a

reflection about the line 𝜃 = 240◦ = 4𝜋
3 . 𝐼 does nothing.

iii. Construct a group table; you can use a calculator.

Here you go.

⋅ 𝐼 𝑟 𝑟2 𝑓 𝑓𝑟 𝑓𝑟2
𝐼 𝐼 𝑟 𝑟2 𝑓 𝑓𝑟 𝑓𝑟2
𝑟 𝑟 𝑟2 𝐼 𝑓𝑟2 𝑓 𝑓𝑟
𝑟2 𝑟2 𝐼 𝑟 𝑓𝑟 𝑓𝑟2 𝑓
𝑓 𝑓 𝑓𝑟 𝑓𝑟2 𝐼 𝑟 𝑟2
𝑓𝑟 𝑓𝑟 𝑓𝑟2 𝑓 𝑟2 𝐼 𝑟
𝑓𝑟2 𝑓𝑟2 𝑓 𝑓𝑟 𝑟 𝑟2 𝐼

iv. Decide which symmetry group your matrix is isomorphic to.

This is the dihedral group of order 6 (𝐷3), or the symmetry group of the triangle (𝑆3).

v. What other sets of matrices could have generated this group?
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The sets {𝑟, 𝑓𝑟}, {𝑟, 𝑓𝑟2}, {𝑟2, 𝑓}, {𝑟2, 𝑓𝑟}, {𝑟2, 𝑓𝑟2}, {𝑓, 𝑓𝑟}, {𝑓, 𝑓𝑟2}, and {𝑓𝑟, 𝑓𝑟2}. In fact, any two
non-identity elements can together generate the group, except for {𝑟, 𝑟2}.

4. The matrix

⎡⎢⎢⎢⎣

√
5−1
4 −

√
10+2

√
5

4√
10+2

√
5

4

√
5−1
4

⎤⎥⎥⎥⎦
generates a group of order 5. Enumerate the elements of

the group and analyze per the example; you can use a calculator.

i. Specify the elements of the matrix group, unless they are all given.

We’d expect this to be a rotation matrix of some multiple of 72◦. Thus, let’s call it 𝑟 for now. It isn’t
immediately clear, however, how to compute cos 72◦. All available sum and difference expressions seem
useless. We’ll defer this computation to part (ii). Here are the elements of the matrix group:

𝑟 =
⎡⎢⎢⎢⎣

√
5−1
4 −

√
10+2

√
5

4√
10+2

√
5

4

√
5−1
4

⎤⎥⎥⎥⎦

𝑟2 =
⎡⎢⎢⎢⎣

− 1+
√
5

4 −
√

10−2
√
5

4√
10−2

√
5

4 − 1+
√
5

4

⎤⎥⎥⎥⎦

𝑟3 =
⎡⎢⎢⎢⎣

− 1+
√
5

4

√
10−2

√
5

4

−
√

10−2
√
5

4 − 1+
√
5

4

⎤⎥⎥⎥⎦

𝑟4 =
⎡⎢⎢⎢⎣

√
5−1
4

√
10+2

√
5

4

−
√

10+2
√
5

4

√
5−1
4

⎤⎥⎥⎥⎦
𝐼 = 𝑟5 =

[
1 0
0 1

]

Note that there are many equivalent ways to write the entries of these matrices. For example,

−

√
10 − 2

√
5

4
= −

√
2
(
5 +

√
5
)
+
√

10
(
5 +

√
5
)
.

The latter is what WolframAlpha gives; I prefer the former form.

ii. Describe what each matrix does to the plane.

We’d guess that 𝑟 is a rotation of 360◦
5 = 72◦, but to prove this we need to find cos 72◦ and sin 72◦.

Consider cos 72◦. Because of symmetry around 2.5 ⋅ 72◦ = 180◦, we have cos(2 ⋅ 72◦) = cos(3 ⋅ 72◦). By
the double-angle and triple-angle (which we found in the complex numbers section) formulae,

cos 2𝑥 = 2 cos2 𝑥 − 1;

cos 3𝑥 = 4 cos3 𝑥 − 3 cos 𝑥.

Let 𝑐 = cos 72◦. Then we have

2𝑐2 − 1 = 4𝑐3 − 3𝑐
4𝑐3 − 2𝑐2 − 3𝑐 + 1 = 0

(4𝑐2 + 2𝑐 − 1)(𝑐 − 1) = 0,
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We know cos 72◦ ≠ cos 0◦ = 1, so

4𝑐2 + 2𝑐 − 1 = 0

𝑐 = −1 ±
√
5

4
.

Since 0 < 72◦ < 90◦, we have 𝑐 > 0, so 𝑐 =
√
5−1
4 . To find sin 72◦ we use the Pythagorean identity and

choose the positive root:

sin 72◦ =
√
1 − 𝑐2 =

√
1 − 5 − 2

√
5 + 1

16

=

√
16 − 6 + 2

√
5

16

=

√
10 + 2

√
5

4
.

Indeed, we have

[
cos 72◦ − sin 72◦
sin 72◦ cos 72◦

]
=
[
𝑐 −𝑠
𝑠 𝑐

]
=
⎡⎢⎢⎢⎣

√
5−1
4 −

√
10+2

√
5

4√
10+2

√
5

4

√
5−1
4

⎤⎥⎥⎥⎦
= 𝑟.

iii. Construct a group table; you can use a calculator.

Here it is:

⋅ 𝐼 𝑟 𝑟2 𝑟3 𝑟4
𝐼 𝐼 𝑟 𝑟2 𝑟3 𝑟4
𝑟 𝑟 𝑟2 𝑟3 𝑟4 𝐼
𝑟2 𝑟2 𝑟3 𝑟4 𝐼 𝑟
𝑟3 𝑟3 𝑟4 𝐼 𝑟 𝑟2
𝑟4 𝑟4 𝐼 𝑟 𝑟2 𝑟3

iv. Decide which symmetry group your matrix is isomorphic to.

This the cyclic group of order 5, or the rotation group of the regular pentagon.

v. What other sets of matrices could have generated this group?

Any matrix in this group, except the identity matrix, would generate the whole group, since 5 is a prime
number.

5. Let 𝐴 =

[
cos 2𝜋

𝑛 − sin 2𝜋
𝑛

sin 2𝜋
𝑛 cos 2𝜋

𝑛

]
, 𝐵 =

[
cos 2𝜋

𝑛 sin 2𝜋
𝑛

sin 2𝜋
𝑛 −cos 2𝜋

𝑛

]
, 𝐶 =

[
1 0
0 −1

]
, and 𝑛 be an integer.

What group is generated by the following sets of generators? Describe them geometrically.

(a) {𝐴}

𝐴 is a rotation matrix rotating by 2𝜋
𝑛 radians, which is the angle subtended by one of the sides of an 𝑛-gon:
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2𝜋
11

Figure 1: A rotation of 2𝜋
𝑛 radians is a symmetry of the 𝑛-gon. Here, 𝑛 = 11.

(b) {𝐵}

𝐵 =

[
cos 2𝜋

𝑛 sin 2𝜋
𝑛

sin 2𝜋
𝑛 −cos 2𝜋

𝑛

]
initially appears to be a rotation matrix, but the right column is negated. What

could this mean?!
Well, notice that 𝐵𝐶 = 𝐴. Since 𝐶 is just a reflection over the 𝑥-axis, 𝐶2 = 𝐼 , so we have 𝐵𝐶𝐶 = 𝐴𝐶

and thus 𝐵 = 𝐴𝐶 . In geometric terms, 𝐵 is a reflection over the 𝑥-axis, followed by a rotation of 2𝜋∕𝑛
radians counterclockwise; recall that our matrices transform right-to-left. But a non-zero rotation followed by
a reflection is just a reflection about a different axis! So {𝐵} generates the cyclic group of order 2, which is
the rotation group of the rectangle or the symmetry group of the line segment.

To confirm this, we can show that 𝐵2 = 𝐼 :

𝐵2 =

[
cos 2𝜋

𝑛 sin 2𝜋
𝑛

sin 2𝜋
𝑛 −cos 2𝜋

𝑛

][
cos 2𝜋

𝑛 sin 2𝜋
𝑛

sin 2𝜋
𝑛 −cos 2𝜋

𝑛

]
=

[
cos2 2𝜋

𝑛 + sin2 2𝜋
𝑛 cos 2𝜋

𝑛 sin 2𝜋
𝑛 − sin 2𝜋

𝑛 cos 2𝜋
𝑛

sin 2𝜋
𝑛 cos 2𝜋

𝑛 − cos 2𝜋
𝑛 sin 2𝜋

𝑛 sin2 2𝜋
𝑛 + cos2 2𝜋

𝑛

]

=
[

1 0
0 1

]
= 𝐼.

(c) {𝐴,𝐵}

Thinking of these as transformations, we see that 𝐵 is a reflection across the line 𝜃 = 𝜋∕𝑛 (not 2𝜋∕𝑛!),
which is a symmetry of the 𝑛-gon20. Combined with the rotation of 2𝜋∕𝑛, this generates the dihedral group of
order 2𝑛: the symmetry group of the 𝑛-gon.

(d) {𝐵,𝐶}

Since 𝐴 = 𝐵𝐶 and 𝐴𝑛−1𝐵 = 𝐶 , this problem’s set can generate 𝐴 and the previous problem’s set can
generate 𝐶 . Thus, they are the same; {𝐵,𝐶} generates the dihedral group of order 2𝑛: the symmetry group
of the 𝑛-gon.

6. Given 𝐶 =
[

1 0
0 −1

]
and 𝐷 =

[
1 1
0 −1

]
, what is the order of the group generated by the

following sets of generators?

(a) {𝐶}

This has order 2, since 𝐶 is just a reflection over the 𝑥-axis. In algebraic terms, 𝐶2 = 𝐼 .

(b) {𝐷}

Interestingly, 𝐷2 = 𝐼 , so this again has order 2. Truly succulent!

(c) {𝐶,𝐷}

20To be pedantic, the 𝑛-gon centered on the origin and with a vertex on the 𝑥-axis.

109



What new do we get from a set of two matrices? Well, consider 𝐶𝐷 = 𝐽 (how fun) and 𝐷𝐶 = 𝐾 (less fun)

which are just 𝐽 =
[

1 1
0 1

]
and 𝐾 =

[
1 −1
0 1

]
, respectively. Let’s analyze products of 𝐽 and 𝐾 .

Well, 𝐽𝐾 = 𝐾𝐽 = 𝐼 . More interesting stuff happens when we multiply them repeatedly.

𝐽 2 =
[

1 2
0 1

]

𝐽 3 =
[

1 3
0 1

]

𝐾2 =
[

1 −2
0 1

]

𝐾3 =
[

1 −3
0 1

]

𝐽 3𝐾2 =
[

1 1
0 1

]
= 𝐽

𝐾3𝐽 2 =
[

1 −1
0 1

]
= 𝐾.

Interesting! It seems a product of 𝐽 ’s and 𝐾 ’s leads to a matrix of the form
[

1 𝑛
0 1

]
, where 𝑛 is an integer.

We can also multiply this by 𝐶 , which gives us the matrices
[

1 𝑚
0 −1

]
, where 𝑚 is an integer. The order of

this group is countably infinite, since we can enumerate all of the elements in a list.

7. What matrix could generate a group isomorphic to the cyclic group of order 𝑛, 𝐶𝑛?

The matrix

[
cos 2𝜋

𝑛 − sin 2𝜋
𝑛

sin 2𝜋
𝑛 cos 2𝜋

𝑛

]
could do so.

8. What set of two matrices could generate a group isomorphic to the dihedral group of order 2𝑛,
𝐷𝑛?

There are a variety of choices, but at least two matrices are needed because the dihedral group is not
cyclic. We could choose one rotation and one reflection, or two reflections; remember that the composition
of two reflections is itself a rotation. One example is a rotation of 2𝜋∕𝑛 radians and a reflection by any axis.
Notice how one rotation gives all possible rotations of a regular 𝑛-gon, and the reflection brings us into the
"mirror world" from which the rotation carries us to dihedral victory.

Not all sets of rotations and reflections work, though. Challenge: What criteria are needed for a set of
matrices to generate the group?

9. The adjacency matrices for the 3-post snap group map to a subgroup of the full cube symmetry
group. What rotations/reflections do they map to?

We take the matrices directly as transformations of a cube centered at the origin, and note that they map
the three basis vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) to each other in some order. These vectors describe three
faces of the cube sharing a common vertex, namely (1, 1, 1), so the matrices are any of the six operations
that exchange these faces. These are the identity, a 120◦ and a 240◦ rotation about the axis (1, 1, 1), and a
reflection about any of three planes passing through the origin and one of the shared edges.

A natural question is how many distinct subgroups 𝐷3 lie within 𝑆4. Geometrically, we see that we can
also take other sets of matrices; any three faces sharing a vertex will do, which gives at least 8, but there
are others. We need three-fold symmetry somehow, which you’re only going to get from rotating about a
vertex-to-vertex axis, and then some matrix that behaves nicely with the rotation.

10. Given 𝑃 =
⎡⎢⎢⎣

0 −1 0
1 0 0
0 0 1

⎤⎥⎥⎦
, 𝑄 =

⎡⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦
, and 𝑅 =

⎡⎢⎢⎣

−1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
, try understanding the groups

generated by:
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Fair warning: these problems are challenging. With more advanced tools of abstract algebra, however,
they are much easier. Nonetheless, I will present “elementary” solutions.

(a) {𝑃 }

We have 𝑃 2 =
⎡⎢⎢⎣

−1 0 0
0 −1 0
0 0 1

⎤⎥⎥⎦
, 𝑃 3 =

⎡⎢⎢⎣

0 1 0
−1 0 0
0 0 1

⎤⎥⎥⎦
, 𝑃 4 =

⎡⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
= 𝐼 . Thus, {𝑃 } generates the

cyclic group of order 4 (𝐶4): the rotation group of the square.

(b) {𝑄}

We have 𝑄2 =
⎡⎢⎢⎣

0 0 1
1 0 0
0 1 0

⎤⎥⎥⎦
and 𝑄3 =

⎡⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
= 𝐼 . Thus, {𝑄} generates the cyclic group of order 3

(𝐶3): the rotation group of the equilateral triangle.

(c) {𝑅}

Since 𝑅2 = 𝐼 , 𝑅 generates the cyclic group of order 2 (𝐶2): the rotation group of the rectangle.

(d) {𝑃 ,𝑄}

This is where the complexity begins.
Approach 1: Purely in Matrices
This way is kind of silly, so I would suggest you read Approach 2.
To wrap our heads around this group, we consider what left-multiplying by 𝑃 and 𝑄 does to a matrix’s

entries. Multiplying 𝑃 by some matrix 𝑀 , we get

⎡⎢⎢⎣

0 −1 0
1 0 0
0 0 1

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⎤⎥⎥⎦
=
⎡⎢⎢⎣

−𝑑 −𝑒 −𝑓
𝑎 𝑏 𝑐
𝑔 ℎ 𝑖

⎤⎥⎥⎦
.

Thus, 𝑃 swaps the top two rows and negates the topmost row, in that order. Multiplying 𝑄 by 𝑀 , we get

⎡⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⎤⎥⎥⎦
=
⎡⎢⎢⎣

𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
𝑎 𝑏 𝑐

⎤⎥⎥⎦
.

Thus, 𝑄 cycles the rows “upward,” where row 1 goes to row 3, row 2 goes to row 1, and row 3 goes to row
2. So 𝑃 and 𝑄 are just operations on rows; columns don’t matter.

Consider the sequence of multiplications

𝑃𝑄𝑄𝑄𝑃𝑄𝑃 ⋯𝑃𝑃𝑃
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

some sequence

𝑄3 = 𝑃𝑄𝑄𝑄𝑃𝑄𝑃 ⋯𝑃𝑃𝑃
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

some sequence

𝐼.

On one hand, every matrix that can be generated by 𝑃 and 𝑄 can be written in this form. On the other
hand, we can treat the sequence of 𝑃 and 𝑄 as (left-to-right) sequential row operations on the identity matrix
𝐼 .

Think of the identity matrix as the ordered triple (𝑅1, 𝑅2, 𝑅3), where 𝑅𝑖 is row vector 𝑖. Then 𝑃 is the
function 𝑓 (𝑟1, 𝑟2, 𝑟3) = (−𝑟2, 𝑟1, 𝑟3) and 𝑄 is the function 𝑓 (𝑟1, 𝑟2, 𝑟3) = (𝑟2, 𝑟3, 𝑟1).

The order of this group is clearly finite; a quick upper bound is the number of permutations of (𝑅1, 𝑅2, 𝑅3),
along with any combination of negations of elements. This is

3! ⋅ 23 = 48.

We can reduce this upper bound by constructing an invariant: something that neither of these operations
change. This invariant is rather simple:

𝐾 =

{
1 cyclic order preserved
0 cyclic order not preserved

+

{
−1 even number of negated rows
0 odd number of negated rows

.
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“Cyclic order” is what I’m calling the property that you can start at 𝑅1 and continue reading right, looping
back if necessary, to read 𝑅1, 𝑅2, 𝑅3. Cyclic order is not preserved if you read 𝑅1, 𝑅3, 𝑅2.

The invariant for the identity is 𝐾 = 0. For all attainable row triples, the invariant is 𝐾 = 0. That’s because
𝑄 just cycles the elements, changing nothing about the invariant, while 𝑃 changes the parity of negated rows
and either restores or removes “cyclic order.” This will produce canceling effects in the two terms of 𝐾 .21

Half of row triples have 𝐾 = 0. A simple way to see this is that cyclic orderedness and negation of rows
can be chosen independently (among all possible triples), and since there are two possibilities for each, there
is a 1∕4 chance of any particular state. Since 2 states are zero, we have 2∕4 = 1∕2 of row triples that have
𝐾 = 0 and can be attained. That’s 1∕2 ⋅ 48 = 24 total row triples for a new upper bound.

Let’s see if we can construct all 24 of these triples using 𝑃 and 𝑄. There are two cases: cyclic order
preserved and even number of negated rows, and non-cyclic order preserved and odd number of negated
rows.

If we can construct ±𝑅1,±𝑅2,±𝑅3 (where the number of -s is even, totaling 4 cases) and ±𝑅1,±𝑅3,±𝑅2
(where the number of -s is odd, totaling 4 cases), then applying 𝑄 iteratively will give us all (4 + 4) ⋅ 3 = 24
possible cases. Let’s see if this is possible.

Case 1: ±𝑅1,±𝑅2,±𝑅3, even number of negations.
Subcase a: 0 negations. This is just the identity, or 𝑄3. Subcase b: 2 negations.
Ssubcase i: −𝑅1,−𝑅2, 𝑅3. We can get this by applying 𝑃 twice: this is just 𝑃 2. Ssubcase ii: −𝑅1, 𝑅2,−𝑅3.

We cycle the elements until 𝑅3 and 𝑅1 are first, then apply 𝑃 2, then cycle back to the original order. In this
case, it is 𝑄𝑃 2𝑄2:

(𝑅1, 𝑅2, 𝑅3) →𝑄2 (𝑅3, 𝑅1, 𝑅2) →𝑃 2 (−𝑅3,−𝑅1, 𝑅2) →𝑄 (−𝑅1, 𝑅2,−𝑅3).

Ssubcase iii: 𝑅1,−𝑅2,−𝑅3. We apply the same concept as ssubcase ii. In this case, it is 𝑄2𝑃 2𝑄.

(𝑅1, 𝑅2, 𝑅3) →𝑄 (𝑅2, 𝑅3, 𝑅1) →𝑃 2 (−𝑅2,−𝑅3, 𝑅1) →𝑄2 (𝑅1,−𝑅2,−𝑅3).

Case 2: ±𝑅1,±𝑅3,±𝑅2, odd number of negations.
Subcase a: 1 negation. Ssubcase i: −𝑅1, 𝑅3, 𝑅2. We cycle to 𝑅3, 𝑅1, 𝑅2, then apply 𝑃 . This is just 𝑃𝑄2.

Ssubcase ii: 𝑅1,−𝑅3, 𝑅2. We cycle to 𝑅2, 𝑅3, 𝑅1, then apply 𝑃 , then cycle to 𝑅1,−𝑅3, 𝑅2. This is just 𝑄2𝑃𝑄.
Ssubcase iii: 𝑅1, 𝑅3,−𝑅2. We apply 𝑃 , then cycle to 𝑅1, 𝑅3,−𝑅2. This is just 𝑄𝑃 .

Subcase b: 3 negations. We can get this by taking ssubcase iii, then left-multiplying by 𝑃 2, which negates
the first two rows. This is just 𝑃 2𝑄𝑃 .

In matrix and row form, these results are summarized like so:

𝐼 = 𝑄3 =
⎡⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
↔ (𝑅1, 𝑅2, 𝑅3)

𝑃 2 =
⎡
⎢⎢⎣

−1 0 0
0 −1 0
0 0 1

⎤
⎥⎥⎦
↔ (−𝑅1,−𝑅2, 𝑅3)

𝑄𝑃 2𝑄2 =
⎡⎢⎢⎣

−1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
↔ (−𝑅1, 𝑅2,−𝑅3)

𝑄2𝑃 2𝑄 =
⎡⎢⎢⎣

1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎦
↔ (𝑅1,−𝑅2,−𝑅3)

𝑃𝑄2 =
⎡⎢⎢⎣

−1 0 0
0 0 1
0 1 0

⎤⎥⎥⎦
↔ (−𝑅1, 𝑅3, 𝑅2)

𝑄2𝑃𝑄 =
⎡⎢⎢⎣

1 0 0
0 0 −1
0 1 0

⎤⎥⎥⎦
↔ (𝑅1,−𝑅3, 𝑅2)

21Verify this yourself if you don’t believe me, I’m getting tired.
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𝑄𝑃 =
⎡⎢⎢⎣

1 0 0
0 0 1
0 −1 0

⎤⎥⎥⎦
↔ (𝑅1, 𝑅3,−𝑅2)

𝑃 2𝑄𝑃 =
⎡⎢⎢⎣

−1 0 0
0 0 −1
0 −1 0

⎤⎥⎥⎦
↔ (−𝑅1,−𝑅3,−𝑅2).

Left-multiplying each of these by 𝐼 (nothing), 𝑄, and 𝑄2 yield all 24 elements of our group. Since this is a
lower bound, and we found 24 to also be an upper bound, this group has order 24.

The underlying structure is a bit unclear still, and honestly this solution method is very tedious and prone
to error. I would’t be surprised if I made a silly error somewhere. This next approach will make it a bit clearer
though.

Approach 2: Geometric Visualization
We observe matrix 𝑃 and notice it looks rather like a rotation matrix in 2D, but taken to 3D in the manner

we discussed in Mapping the Plane with Matrices. In particular, it is a rotation counterclockwise by sin−1 1 =
90◦ = 𝜋

2 about the 𝑧-axis. (Note that rotating about the origin in 2D is rotating about the 𝑧-axis in 3D.)
What transformation is matrix 𝑄 then? Well just as we could apply a matrix to the points (1, 0) and (0, 1)

to understand its behavior in 2D, we can apply a matrix to the points (1, 0, 0), (0, 1, 0), and (0, 0, 1). This tells
us that (1, 0, 0) is mapped to (0, 0, 1), (0, 1, 0) is mapped to (1, 0, 0), and (0, 0, 1) is mapped to (1, 0, 0) (we get
this by reading off the column vectors). Drawing out this motion makes it clear that it is a rotation, as shown
in Figure 11.

Figure 2: 𝑄 is a rotation about an interesting axis 𝑙, the one going between (0, 0, 0) and (1, 1, 1).

Let’s try to find an object which has these two rotations as symmetries. An obvious one is the cube,
centered at (0, 0, 0). Arbitrarily, let’s let the vertices be (±1,±1,±1). Then these two matrix rotations look like
so:

Figure 3: Rotation 𝐼 . Figure 4: Rotation 𝑃 . Figure 5: 𝑄.
So since both generators are valid rotations of the cube, we at least know that this group is a subgroup

of the rotation group of the cube, which we previously found to be 𝑆4, the permutation group on 4 elements.
To figure out which subgroup, we recall the methodology we used to prove that the rotation group of the cube
was isomorphic to 𝑆4. We labeled opposite vertices with the same number, going 1 through 4. Then each
valid rotation of the cube corresponds with a permutation of (1, 2, 3, 4) on a chosen face. In this case, we will
use the top face, and consider the vertices counterclockwise starting from the corner facing the camera.
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We find which permutations 𝑃 and 𝑄 correspond to:

Figure 6: 𝐼 ↔ (1, 2, 3, 4), accord-
ing to the top face.

Figure 7: 𝑃 ↔ (4, 1, 2, 3). Figure 8: 𝑄 ↔ (1, 4, 2, 3).

So 𝑃 is a cyclic permutation of all four elements (which makes sense, since the top face is just rotating
90◦), and 𝑄 is a cyclic permutation of the last three elements. This makes sense; 𝑃 has period 4 and 𝑄 has
period 3. What permutations can we generate with these two operations though?

We show that we can swap any two adjacent elements. If this is possible, then any permutation can
definitely be reached.

First, we show we can swap the first two elements. This is done by the sequence 𝑃 3𝑄2:

(1, 2, 3, 4) →𝑄2 (1, 3, 4, 2) →𝑃 3 (2, 1, 3, 4).
Then, to swap elements in positions 𝑖 and 𝑖 + 1, where 1 ≤ 𝑖 ≤ 3, we 1. cycle the elements so that the

elements once in positions 𝑖 and 𝑖 + 1 are now in positions 1 and 2; 2. perform the aforementioned swap; 3.
cycle the elements back to their original positions.

For example, suppose we want to swap the second and third elements in (1, 2, 3, 4). Then we start with
𝑃 3, which makes the sequence (2, 3, 4, 1). Continuing with the swap, 𝑃 3𝑄2, takes us to (3, 2, 4, 1). Then 𝑃
takes us to (1, 3, 2, 4). Overall, this transformation is 𝑃𝑃 3𝑄2𝑃 3, which actually simplifies to 𝑄2𝑃 3.

A bit more formally, the swap between positions 𝑖 and 𝑖 + 1 is

𝑃 𝑖−1𝑃 3𝑄2𝑃 5−𝑖.

(Note that 𝑃 0 = 𝐼 .) In our example, 𝑖 = 2.
So we can swap any two elements. This means we can get any permutation22.
So {𝑃 ,𝑄} generates the rotation group of the cube, which is the permutation group on 4 elements 𝑆4.

(e) {𝑃 ,𝑅}

This isn’t too hard to do with matrices, but a geometric way is more fun. Observe the matrices’ resem-
blance to 2D transformation matrices (we’ve already observed this for 𝑃 ):

𝑃 =
⎡⎢⎢⎣

0 −1 0
1 0 0
0 0 1

⎤⎥⎥⎦
; 𝑅 =

⎡⎢⎢⎣

−1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
.

𝑃 is thus a rotation counterclockwise by 90◦, and 𝑅 is a reflection over the 𝑦-axis, since the 𝑥 coordinate
is being negated. This makes clear that it is the dihedral group of the square, 𝐷4, which has order 8.

(f) {𝑄,𝑅}

This is a bit trickier, because 𝑄 is not reducible to some plain 2D transformation matrix. Luckily, left-
multiplying by 𝑅 is a row operation, so we recall the idea of naming the rows of the identity matrix 𝑅1, 𝑅2, and
𝑅3:

[ ]𝑅1 1 0 0
𝑅2 0 1 0
𝑅3 0 0 1

.

We represent 𝐼 as the ordered triple (𝑅1, 𝑅2, 𝑅3). Then left-multiplying by 𝑄 is the function 𝑓 (𝑟1, 𝑟2, 𝑟3) =
(𝑟3, 𝑟1, 𝑟2), and left-multiplying by 𝑅 is the function 𝑓 (𝑟1, 𝑟2, 𝑟3) = (−𝑟1, 𝑟2, 𝑟3).

22This is intuitive but we haven’t actually proved it. Perhaps I’ll add the proof later? Nah.
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It’s pretty clear what’s going on now. Since we can cycle the rows as we please, and negate any one of
them, we have 3 orders23 and 23 possible negation patterns, we have 3 ⋅ 23 = 24 total elements.

But what is the structure of this group? Is it again, the rotation group of the cube? Let’s keep in mind the
fact that this group has order 24 and enter the geometric realm.

We know that 𝑅 is a reflection of the 𝑥-coordinate, and thus through the 𝑥𝑦-plane. 𝑄 and 𝑅 are indeed
symmetries of the cube, but since the full symmetry group of the cube (including reflections) has 48 elements,
we need something a bit more restrictive.

This is a leap in logic, but bear with me for a moment. Have you ever looked carefully at a standard
volleyball, like the one in Figure 9? It has six sides, but the sides have extra features on them: the seams,
which are directional.

Figure 9: A standard volleyball, with its in-
teresting striations.

Figure 10: This rotation of 90◦ is a symme-
try of the cube, but not of the volleyball.

This is similar to a cube, in that it has six sides, but it has fewer symmetries. For example, we can’t rotate
it 90◦ about an axis going straight through two opposite faces, since then the seams would not line up. This is
shown in Figure 10.

The motivation for analyzing this shape is that it does accept the matrices 𝑅 and 𝑄 as symmetries. 𝑅, or
flipping the volleyball over a midplane between two opposite sides, is a symmetry, as shown in Figure 11. 𝑄,
or rotating the volleyball 120◦ around a vertex-vertex axis, is also a symmetry, as shown in Figure 12.

23Not 6 orders, since the “cyclic order” is preserved. That is, something like (𝑅1, 𝑅3, 𝑅2) is not achievable.
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Figure 11: 𝑅, a reflection through the 𝑦𝑧-
plane, is a symmetry of the volleyball.

Figure 12: 𝑄, a 120◦ rotation around the
axis 𝑙, is a symmetry of the volleyball.

Indeed, since there are two possible directions for each set of seams, it seems like this should have half
the symmetries of the cube. To make this concrete, we observe that there are six faces. Each face can be
oriented to face the top, and there are two choices—not four—for its orientation, since it only has bilateral
symmetry and not four-fold symmetry like a square. This gives 6 ⋅ 2 choices. But we can also mirror the
volleyball into the “mirror world,” which multiplies the number of choices by 2. Thus, there are 6 ⋅ 2 ⋅ 2 = 24
symmetries of the volleyball.

We know that 𝑄 and 𝑅 are symmetries of the volleyball, and, via our matrix logic, generate a group of
order 24. But if they generated a group other than the symmetry group of the volleyball—let’s call it 𝑉 for
short—then 𝑉 isn’t closed, since some elements 𝑄,𝑅 ∈ 𝑉 generate a different group of the same order.

So {𝑄,𝑅} generates the symmetries of a volleyball! I think this is wonderful. For the curious, this is known
as pyritohedral symmetry. Spicy. As an abstract group, this is 𝐴4 × 𝐶2, where 𝐴4 is the alternating group on
4 elements.

(g) {𝑃 ,𝑄,𝑅}.

While this may look terrifying at first, we can reuse lots of information from the previous problems. We know
that 𝑃 ,𝑄,𝑅 are all symmetries of the cube (including reflections). Thus, {𝑃 ,𝑄,𝑅} generates a subgroup of
the symmetry group of the cube, which we previously found has order 48 (and abstract structure 𝑆4 × 𝐶2)

We also know that {𝑃 ,𝑄} generates the rotational group of the cube, which has order 24. Thus, since
𝑅 is a plain old reflection, it takes every element of the rotational group to the “mirror world,” for a total of
24 ⋅ 2 = 48 elements. The only subgroup with order 48 of a group of order 48 is the group itself. Therefore,
{𝑃 ,𝑄,𝑅} generates the full symmetry group of the cube, which has order 48.

11. The matrix
[

1 1
0 1

]
produces a shear. What is its inverse—what undoes the shear?

The matrix
[

1 −1
0 1

]
undoes the shear, since the product of these two matrices is the identity matrix.

12. The complex numbers, excluding zero, form a group under multiplication. What set of matrices
is isomorphic to the same group under multiplication?

As we found previously, the set of matrices of the form
[

𝑎 −𝑏
𝑏 𝑎

]
where 𝑎, 𝑏 ∈ ℝ under multiplication is

isomorphic, since we have the one-to-one correspondence
[

𝑎 −𝑏
𝑏 𝑎

]
↔ 𝑎 + 𝑏𝑖.
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13. Does the set of all 2 × 2 matrices form a group under multiplication? Why or why not?

No, because there is no matrix 𝑀 such that 𝑀
[

0 0
0 0

]
=
[

1 0
0 1

]
; it cannot satisfy invertibility.
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